1. Intégrales dépendant d'un paramètre

Exercice 1 (Intégrabilité en fonction d'un paramètre). Étudier, en fonction du paramètre réel a, l'intégrabilité sur l'intervalle I de la fonction f_a :

1.
$$f_a: t \mapsto \frac{t^a}{\exp(t)-1}, I = \mathbb{R}_+$$

3.
$$f_a: t \mapsto \exp(-t)t^{a-1}, I = \mathbb{R}_+$$

2.
$$f_a: t \mapsto \frac{1 - \exp(-at^2)}{t^2}, I = \mathbb{R}_+$$

4.
$$f_a: t \mapsto \ln(a^2 - 2a\cos(t) + 1), I = [0, \pi]$$

Exercice 2 (Théorème de la valeur initiale). Soit f une fonction de classe \mathscr{C}^1 sur \mathbb{R}_+^\times telle que f' soit bornée et intégrable sur \mathbb{R}_+^\times . On pose $F: p \mapsto \int_{\mathbb{R}_+^\times} \exp(-pt) f(t) dt$. À l'aide d'une intégration par partie, démontrer que $\lim_{p \to +\infty} pF(p) = \lim_{t \to 0^+} f$.

Exercice 3 (Théorème de la valeur finale). Soit f une fonction de classe \mathscr{C}^1 sur \mathbb{R}_+^\times telle que f' soit intégrable sur \mathbb{R}_+^\times . On pose $F: p \mapsto \int_{\mathbb{R}_+^\times} \exp(-pt) f(t) dt$. On souhaite démontrer que $\lim_{p \to 0^+} pF(p) = \lim_{t \to +\infty} f(t)$.

- 1. Montrer que la fonction $G: p \mapsto \int_{\mathbb{R}^{\times}} \exp(-pt) f'(t)$ est continue sur \mathbb{R}_+ .
- 2. En déduire $\lim_{p\to 0^+} G(p) = \lim_{t\to\infty} f \lim_{t\to 0^+} f$.
- 3. Montrer que pour tout $p \ge 0$, on a $G(p) = -\lim_{n \to \infty} f + pF(p)$, puis conclure.

Exercice 4 (Calcul de l'intégrale de Gauss). Soit pour $x \in \mathbb{R}$, $F(x) = \int_0^1 \frac{\exp(-(t^2+1)x^2)}{t^2+1} dt$.

- 1. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. On pose $h(x) = \int_0^x \exp(-t^2) dt$. Exprimer F' en fonction de h et de sa dérivée.
- 3. En déduire une expression de F en fonction de F(0) et de h.
- 4. Montrer que $\forall x \in \mathbb{R}$, $F(x) \le \exp(-x^2) \frac{\pi}{4}$.
- 5. En déduire la valeur de l'intégrale $\int_{\mathbb{R}^+} \exp(-t^2) dt$.

Exercice 5. 1. Montrer que la fonction $x \mapsto \int_1^2 \frac{\exp(-xt)}{t} dt$ est de classe \mathscr{C}^1 sur $[0, +\infty[$ et donner une expression de sa dérivée.

2. En déduire la valeur de $\int_{\mathbb{R}_+} \frac{\exp(-t) - \exp(-2t)}{t} dt$.

Exercice 6 (Transformée de Fourier d'une Gaussienne). Pour $\alpha \in \mathbb{R}_+^{\times}$, on définit $f_{\alpha}(t) = \exp\left(-\alpha \frac{t^2}{2}\right)$. On pose alors $T_{\alpha}(x) = \int_{\mathbb{R}} \exp(-ixt) f_{\alpha}(t) dt$. Montrer que T_{α} est de classe \mathscr{C}^1 sur \mathbb{R} et que T_{α} est solution de l'équation différentielle $y' + \frac{x}{a}y = 0$, puis sachant que $\int_{\mathbb{R}} \exp\left(-t^2\right) dt = \sqrt{\pi}$, en déduire une expression de $T(f_{\alpha})$.

Exercice 7 (Domination locale). On pose pour $x \in \mathbb{R}$, $F(x) = \int_0^1 \frac{\sin(xt)}{t} \exp(-t) dt$.

- 1. Soit $A \in \mathbb{R}_{+}^{\times}$. Montrer que la fonction F est continue sur le segment [0, A].
- 2. En déduire que F est continue sur \mathbb{R} .

Exercice 8 (**Calcul de l'intégrale de Dirichlet). On pose pour $x \in \mathbb{R}_+$, $F(x) = \int_1^{+\infty} \frac{\sin(t)}{t} \exp(-xt) dt$, et également pour $t \ge 1$, $g(x,t) = \frac{\exp(-xt)}{1+x^2} (x \sin(t) + \cos(t))$.

- 1. Montrer que $\forall x \in \mathbb{R}_+^{\times}$, $\int_0^{+\infty} \frac{\sin(t)}{t} \exp(-xt) dt = \frac{\pi}{2} \arctan(x)$
- 2. Montrer que $\forall x \in \mathbb{R}_+$, $F(x) = g(x,1) \int_1^{+\infty} \frac{g(x,t)}{t^2} dt$.
- 3. En déduire que la fonction F est continue en 0^+ , puis calculer $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

2. Transformation d'intégrale en série

Exercice 9 (Transformations d'intégrale en série). Montrer les égalités suivantes :

1.
$$\int_0^1 \frac{\ln(t)}{1-t^2} dt = -\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$$

3.
$$\forall p \in \mathbb{N}^{\times}$$
, $\int_0^{+\infty} \frac{t^p}{\exp(t) - 1} dt = \sum_{n=1}^{+\infty} \frac{p!}{n^{p+1}}$

2.
$$\int_0^1 \frac{dt}{t^t} = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$

4.
$$\forall x \in \mathbb{R}$$
, $\int_0^{+\infty} \frac{\sin(xt)}{\exp(t) - 1} dt = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$

Exercice 10 (Un calcul de la somme des inverses des carrés). On admet la valeur des intégrales de Wallis : $\forall n \in \mathbb{N}$, $\int_0^{\frac{\pi}{2}} \sin^{2n+1}(t) dt = \frac{(2^n n!)^2}{(2^n n+1)!}$.

- 1. Déterminer le développement en série entière de la fonction arcsin.
- 2. En déduire que $\forall t \in [0, \frac{\pi}{2}], \quad t = \sum_{n=0}^{+\infty} \frac{1}{2n+1} \frac{(2n)!}{(2^n n!)^2} \sin^{2n+1}(t).$
- 3. En déduire que $\frac{\pi^2}{8} = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$, puis calculer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice 11 (Fonctions entières bornées). Soit $\sum a_n z^n$ une série entière de rayon de convergence infini, et f la fonction somme.

- 1. Montrer que $\forall n \in \mathbb{N}$, $a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(r \exp(i\theta)) \exp(-in\theta) d\theta$ (on admettra le théorème d'interversion pour les fonctions à valeur complexes).
- 2. On suppose que f est bornée sur \mathbb{C} . Montrer que f est constante.

3. Extrait du concours (3/2)

Soit *G* la fonction qui, à tout réel $x \ge 0$, associe : $G(x) = \int_0^{+\infty} e^{-t} t^x dt$.

- 1. Montrer que, pour tout réel $x \ge 0$, l'intégrale G(x) est convergente.
- 2. Que vaut *G*(0)?
- 3. Soit A un réel strictement positif. Montrer que, pour tout réel strictement positif t, et tout réel x de [0, A]:

$$\left| \mathbf{e}^{-t} t^{x} \right| \leq \left(1 + t^{A} \right) \mathbf{e}^{-t}.$$

- 4. Montrer que G est continue sur [0, A].
- 5. Montrer que, pour tout réel $x \ge 0$: G(x+1) = (x+1)G(x).
- 6. Calculer, pour tout entier naturel n : G(n).

4. Extrait du concours (5/2)

On considère la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \int_0^{+\infty} \frac{\sin^2(xt)}{t^2} \exp(-t) dt$$

1. Établir l'égalité :

$$\forall x \in \mathbb{R}, \quad \int_0^x \arctan(2t) dt = x \arctan(2x) - \frac{1}{4} \ln(1 + 4x^2)$$

- 2. Pour $x \in \mathbb{R}$, montrer l'inégalité $|\sin x| \le |x|$.
- 3. Pour a > 0, montrer que la fonction f est de classe \mathscr{C}^2 sur]-a, a[.
- 4. En déduire que la fonction f est de classe \mathscr{C}^2 sur \mathbb{R} .
- 5. Pour $x \in \mathbb{R}$, calculer f''(x).
- 6. En déduire une expression de f à l'aide des fonctions usuelles.